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Criticality of natural absorbing states
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We study a recently introduced ladder model that undergoes a transition between an active and an infinitely
degenerate absorbing phase. In some cases the critical behavior of the model is the same as that of the
branching-annihilating random walk withN>2 species both with and without hard-core interaction. We show
that certain static characteristics of the so-called natural absorbing states develop power-law singularities that
signal the approach of the critical point. These results are also explained using random-walk arguments. In
addition to that we show that when dynamics of our model is considered as a minimum-finding procedure, it
has the best efficiency very close to the critical point.
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I. INTRODUCTION

In recent years, a large amount of theoretical works@1#
has been devoted to the study of phase transitions in m
with absorbing states. One aim of these studies is to cha
terize the possible universality classes. Only few exact
sults can be obtained. Accordingly, numerical simulatio
particularly Monte Carlo simulations and finite size scali
methods, have been widely used@2#.

Usually, Monte Carlo method is used to simulate a mo
in its active phase, where various steady-state characteri
can be measured. When the system approaches a cr
point these characteristics develop some critical singularit
But the critical behavior can be also studied from an abso
ing phase. In this case, however, one usually studies ce
dynamical properites of the model that exhibit critical sing
larities. For example, the average time needed to reach
absorbing state diverges when approaching the critical po
When appropriately defined, all critical exponents can be
fined through some dynamical singularities in an absorb
phase.

Is it possible to infer some information about criticality
the model from the structure of absorbing state~s!? Very of-
ten a given model has only finitely degenerate, homogene
absorbing state that does not carry any of such informat
However, there exists a number of models that have i
nitely many absorbing states. When the control paramete~s!
set the model in the absorbing phase and far from the crit
point, an absorbing state is reached quite fast and we m
expect that, in such a case, the absorbing state will be alm
randomly selected among all the absorbing states of
model. In the following, an absorbing state reached as a c
sequence of the dynamics of the model and starting fro
random initial configuration will be called a natural absor
ing state. However, when the system is close to the crit
point, the evolution towards the absorbing state is quite lo
and can be complicated. It is very likely that, in this ca
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natural absorbing states constitute only a certain fraction
all absorbing states.

Are there any quantities that would specify which abso
ing states are selected by the model’s dynamics? In the
text of phase transitions it would be particularly interesting
such quantities would also contain information about
critical point of the model~e.g., its location and maybe som
of its exponents!. We are not aware that, such question
which would certainly provide a better understanding
models with absorbing states, have been previously con
ered.

The aim of the present paper is to investigate the ab
questions by studying a recently introduced one-dimensio
model with infinitely many absorbing states@3#. Critical be-
havior of this model seems to be closely related with that
some multispecies branching-annihilating random-w
models~BARW!. Using Monte Carlo method we show tha
the natural absorbing states do contain important informa
about the critical behavior of the model. In particular, w
show that certain characteristics of natural absorbing st
exhibit power singularities upon approaching the critic
point.

The model and some of its basic properties are descr
in Sec. II. Monte Carlo results that show that the structure
natural absorbing states contains information about critica
of the model are discussed in Sec. III. In Sec. IV, numeri
findings are corroborated by random-walk arguments. In S
V we also look at the dynamics of our model as a cert
minimum-finding procedure. Such an approach, when s
ably generalized might serve as a general-purpose techn
to solve some optimization problems. Finally, concluding
marks are made in Sec. VI.

II. MODEL AND ITS BASIC PROPERTIES

Our model is defined on a one-dimensional ladderlike
tice. For each bond between the nearest-neighboring site
introduce a bond variablewP(21,1) @4#. Introducing pa-
rameters r and s, we call a given site active when
w1w2uw3us,r , wherew1 and w2 are intrachain bond vari-
ables connected with this site andw3 is the interchain vari-
able. Otherwise, this site is called nonactive. The mode
©2001 The American Physical Society07-1
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driven by random sequential dynamics and when the ac
site is selected, we assign anew, with uniform probabil
three neighboring bond variables. Nonactive sites are not
dated. For a more detailed description of this model see
@3#.

Models of this kind might be used to describe coar
grained biological evolution, where species~sites! mutate
only when the interaction with other species puts to mu
pressure on it~i.e., when the site is active! @5#. In addition,
the above model provides an example of a coupled sys
whose criticality is changed due to this coupling. Recen
related systems are drawing certain attention@6#.

Monte Carlo simulations supported by some analytic c
siderations clarified the basic properties of this model, wh
can be briefly sumarized as follows@3#. For r .0 the model
is in the active phase. Forr ,0 the model generates, at
finite rate, sites that are nonactive and that will remain in t
state forever. Thus, the model, very quickly, enters an
sorbing state and forr ,0 the model is in the absorbin
phase. The transition pointr 50 is critical and some quanti
ties exhibit a power-law behavior. For example, the or
parameterr decays in time with an exponentd

r~ t !;t2d with d50.5. ~1!

The average timet needed to reach an absorbing state
creases with the system sizeN as

t;Nz with z52. ~2!

Moreover, forr→01, the order parameter scales asr;r b,
while the transverse correlation length diverges asj'

;r 2n' with

b5n'51/s for s>1. ~3!

At r 50 the model’s dynamics is particularly simple sin
in this case the coupling between chains (w3) is irrelevant
and only the sign ofw1w2 determines~non!activity of a site.
The dynamics of the model is thus similar to a certa
branching-annihilating random-walk model, for which exp
nents~1! and ~2! can be derived analytically@7#.

At first sight, from Eq.~3! it seems that our model ha
continuously changing~with s) exponentsb andn' . How-
ever, it was shown@3# that this nonuniversality can be re
moved when the control parameterr is replaced by the reac
tivation probability@8#. Note that the critical behavior of thi
model is related with that of certain BARW models. Indee
critical exponents~3! for s51 are the same as in the mult
species BARW model without exclusion@9#. Moreover, ex-
ponents fors52 correspond to the BARW model with hard
core exclusion@10,11#. Since nonuniversality of our mode
can be removed by an appropriate redefinition of the con
parameter, it suggests that a similar situation might t
place in BARW models. However, up to now, it seems th
there is no simple relation between BARW models with a
without exclusion. In addition, it would be interesting to ge
eralize BARW models so that exponentsb and n' would
change continuously with a certain parameter that would
terpolate between the case with and without exclusion.
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III. STRUCTURE OF NATURAL ABSORBING STATES

In this section we examine natural absorbing states of
model for r<0. First, let us define the following pseudoe
ergy e as

e52
1

2N (
j

w1 jw2 j uw3 j us, ~4!

where summation is over all sitesj of the model,w1 j , w2 j ,
andw3 j are three bond variables connected to the sitej, and
N is the linear size of the system. Active sites are tho
whose contributions to Eq.~4! exceeds2r . Another interest-
ing quantity is the average valueē(r ) of e calculated for
natural absorbing states.

Note that at criticality,ē(0) can be calculated exactly
Indeed, in this case any of the absorbing states has the
lowing structure: each chain has all intrachain variablesw of
the same sign and interchain variables can take arbitrary
ues. Moreover, forr 50 the dynamics of the model is suc
that it is only the sign of bond variables that matters wh
their values are irrelevant. It means that the only requirem
for a site belonging to a certain absorbing state is that
intrachain variables connected to this site are of the sa
sign. Hence,

ē~0!52
1

2N
~2N!E

0

1

w1dw1E
0

1

w2dw2E
21

1 1

2
uw3usdw3

52
1

4~s11!
, ~5!

where the triple integral gives the single site contribution
ē(0).

In the absorbing phase, the situation is not so simple
an analytic evaluation ofē(r ) is not possible. However, this
quantity can be estimated by Monte Carlo simulations. Fo
given value ofr, we start from a random bonds configuratio
and evolve the system until an absorbing state is reac
The averageē(r ) is then obtained by calculatinge for sev-
eral independent absorbing states.

Simulations were done for systems of sizeN51000. For
r 50, the analytical prediction was recovered with a gre
precision by averaging over approximately 103 independent
absorbing states. As a check, the result of Eq.~5! for s
51, 2, and 4 was reproduced with the accuracy of 1023

;1024.
Our main concern is, however, the off-critical behavior

ē(r ). For r ,0 the requirement that all intrachain bonds ha
to be of the same sign is no longer necessary. As a re
absorbing states might have a more complicated struct
hence we were not able to calculateē(r ) exactly. However,
since forr ,0 the dynamics leads to an absorbing state m
faster than at criticality, we expect thatē(r ,0).ē(0) and
that ē(r ) is a decreasing function ofr. Indeed, the dynamics
searches for states with small pseudoenergy. This behavi
confirmed by the numerical simulations. In addition,
7-2
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CRITICALITY OF NATURAL ABSORBING STATES PHYSICAL REVIEW E64 031107
shown in Fig. 1, our results indicate thatē(r ) has a power-
law singularity atr 50 and for vanishingr behaves as

ē~r !2ē~0!;r p, ~6!

wherep is ans-dependent exponent.
The least square fit to these data~using the ten closes

datapoints tor 50) leads to the following exponents:p
50.46, 0.245, and 0.128 fors51, 2, and 4, respectively
These values ofp suggest that the true exponents~for infinite
systems! are p51/2s. In the following section we present
random-walk argument that supports this claim.

IV. RANDOM-WALK ARGUMENT

First let us recall certain properties of this model that h
for r ,0. As it was already shown@3# in this case the mode
generates sites that remain permanently nonactive. Indee
after updating certain active site the interchain bondw3 sat-
isfies the condition

uw3us,2r , ~7!

then both sites connected tow3 remain permanently nonac
tive. Since there is a finite probability to satisfy Eq.~6!, for
r ,0 activity in the system quickly dies out and the mode
in the absorbing phase.

Now, to explain the observed scaling ofē(r )2ē(0), let us
assume thatr is negative and very close to zero. As it w
already discussed, atr 50 an absorbing state is composed
‘‘ferromagnetic’’ chains. We think that the following scenar
describes the dynamics forr ,0. For early times, the evolu
tion of the model resembles ther 50 case and the system
develops larger and larger ‘‘ferromagnetic’’ domains~coars-
ening!. At the late stage the evolution of the system is mai
governed by the dynamics of the domain walls. Forr 50 the
system would coarsen until the fully ‘‘ferromagentic’’ sta
was reached. However, forr ,0, the activity between do
mains might die out quicker, mainly due to the possibility

FIG. 1. The log-log plot ofē(r )2ē(0) as a function ofr for
s51 (h), 2 (3), and 4 (!). For s52 we also plot the density o
permanently nonactive sites~1!.
03110
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creation of permanently absorbing sites~in the following we
will present some Monte Carlo data supporting this assum
tion!.

Using this assumption we estimate the number of perm
nently nonactive sitesNp as follows. First, let us notice tha
for r 50, the coarsening proceeds with the exponentd50.5
@3#. It means that the number of active sitesNa(t) in the
system scales for large time asNa(t);Nt20.5. It is well
known that the time needed to form a domain of sizel by
coarsening~and for a dynamics with nonconservation law!
scales asl 2 ~random-walk argument@12#!. Next, we estimate
the total number of updates needed to create domains o
typical sizel as

E
0

l 2

Na~ t !dt;Nl. ~8!

From Eq. ~8! the probability of creating of a permanent
nonactive site scales as (2r )1/s. It means that the typical size
l that scales as the inverse of the density of permane
nonactive sites behaves as

l;
N

Nlur u1/s
. ~9!

In the above relation we assume that the number of per
nently nonactive sites scales as the product of the total n
ber of updates~8! with the probability of their creation
(;ur u1/s). Using Eq.~9! we obtain that the density of perma
nently nonactive sites scales as

1/l;ur u1/(2s). ~10!

The last relation explains the scaling relationē(r )2ē(0)
;ur u1/(2s) observed in Monte Carlo simulations of the prev
ous section. Indeed, forr negative and close to zero the on
‘‘excitations’’ above theē(0) are due to the permanentl
nonactive sites and this contribution should be proportio
to their density.

To confirm our scaling arguments we measured the d
sity of interchain bonds satisfyinguw3u,u2r u1/s. For s.1
majority of permanently nonactive sites is created on s
bonds. Our results, fors52 presented in Fig. 1, confirm tha
the density of such sites scales asur u1/(2s). At the same time
this confirms the consistency of the arguments presente
this section.

V. DYNAMICS AS A MINIMUM-FINDING PROCEDURE

In this section we consider the dynamics of our model
a procedure to minimalizee: active sites are only thos
whose contributions toe exceed2r . Of course, the pseu
doenergye is a meaningful quantity also in the active phas
Thus, one can ask the following question: In which phase
dynamics finds more optimal solution? In the active pha
the dynamics cannot inactivate all sites beacause the req
ments for that are too tight. Thus, even when a ‘‘good’’ set
sites is found it gets destroyed by neighboring active si
As a result a finite fraction of sites remains active with
7-3
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ADAM LIPOWSKI AND MICHEL DROZ PHYSICAL REVIEW E 64 031107
relatively large contributions toe. In the absorbing phase
‘‘good’’ set has a much larger probability to survive but th
condition for being inactive are milder now and, as a res
worse solutions are also being found. Competition of
these effects implies that ther dependence of the pseudoe
ergy is rather difficult to predict.

To approach this problem we measurede also in the ac-
tive phase and our results are shown in Fig. 2. In the abs
ing phase we can see, the already analyzed, singular beh
with minimum for r 50. More interesting is the behavior i
the active phase. First, we can see that there is a~narrow!
range ofr where in the steady statee is lower than in the
absorbing phase. Most likely, however, forr→01 the pseu-
doenergye continuously approaches ther 50 value~5!. The
lowest-e solution is found forr;0.000 18 that is very close
to the critical point but not at the critical point.

In the field of combinatorial optimization, one frequent
encounters problems similar to minimization of functio
like Eq. ~4!. For example, the traveling salesman proble
@13# or number partitioning@14# are equivalent to minimiza
tion of certain spin-glass-like Hamiltonians. Main techniqu
to deal with such problems are usually simulated annea

FIG. 2. The pseudoenergye as a function ofr for s52. In the
absorbing phase (r ,0) the results are averaged over 103 absorbing
states (L5103). In the active phase (r .0) we made an ordinary
steady-state averaging ensuring that the presented results ar
independent~for r close to zero simulations were made forL
5105). The black square denotes the exact value~5!.
ls

l.
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@15#, genetic algorithms@16#, or their hybrids. In principle it
should be possible to extend our approach to solve so
other optimization problems too. Having an energy functi
we should define active sites as those whose contribution
this energy exceed certain value and then evolve the sys
similarly to the present model. Applicability and efficienc
of this approach to deal with more typical optimization pro
lems is, however, left as a future problem. In addition,
hope that such a method might reveal new connections
tween statistical mechanics of models with absorbing sta
and computational techniques.

VI. CONCLUSIONS

In this work, we have shown that natural absorbing sta
in a certain model contain important information about t
critical point of the model. This information is encoded
the static properties of these states. We should mention
natural absorbing states are well known to contain inform
tion about dynamic properties of models with infinitely ma
absorbing states. In particular, characteristics of the so-ca
spreading are known to have power-law singularities at
critical point and the corresponding exponents exhibit cert
universality.

An extension of this work is to check whether our resu
are applicable to other models with infinitely many abso
ing states. Such models appears in various contexts ran
from catalysis@17# to self-organized criticality@18# and bio-
logical evolution@5#. In some cases, the absorbing states
expected to be quite complex@19# and some indications o
criticality might be hidden in their static structure. Unfortu
nately, we do not know which quantities would exhibit the
critical singularities. In particular, it is not obvious to us th
in other models there exist permanently nonactive sites
most likely are responsible for the singularities observed
our model. Another question is what are the exponents c
acterizing these critical singularities~provided they exist!. In
our case, the corresponding exponent@1/(2s)# equals to half
of the exponentb(51/s) and it would be interesting to
check whether similar relation holds for other models.
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