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Criticality of natural absorbing states
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We study a recently introduced ladder model that undergoes a transition between an active and an infinitely
degenerate absorbing phase. In some cases the critical behavior of the model is the same as that of the
branching-annihilating random walk witi=2 species both with and without hard-core interaction. We show
that certain static characteristics of the so-called natural absorbing states develop power-law singularities that
signal the approach of the critical point. These results are also explained using random-walk arguments. In
addition to that we show that when dynamics of our model is considered as a minimum-finding procedure, it
has the best efficiency very close to the critical point.
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[. INTRODUCTION natural absorbing states constitute only a certain fraction of
all absorbing states.
In recent years, a large amount of theoretical wdrkk Are there any quantities that would specify which absorb-

has been devoted to the study of phase transitions in mod#lg states are selected by the model’s dynamics? In the con-
with absorbing states. One aim of these studies is to charaéext of phase transitions it would be particularly interesting if
terize the possible universality classes. Only few exact resuch quantities would also contain information about the
sults can be obtained. Accordingly, numerical simulationscfitical point of the modele.g., its location and maybe some

particularly Monte Carlo simulations and finite size scaling®f its exponents We are not aware that, such questions,
methods, have been widely usggl. which would certainly provide a better understanding of

Usually, Monte Carlo method is used to simulate a modef“c’dels with absorbing states, have been previously consid-

in its active phase, where various steady-state characteristigéed' . . . .
b y The aim of the present paper is to investigate the above

can be measured. When the system approaches a CrItICc"iltljestions by studying a recently introduced one-dimensional

point thesglcharacter!stlcs develop some.crmcal S'ngma”t'esihodel with infinitely many absorbing statfg]. Critical be-

BUI the critical pehawor can be also studied from an abs‘Orbﬁavior of this model seems to be closely related with that of
'ng phgse. In th|s' case, however, one usuz?llly st_u'dles certahme multispecies branching-annihilating random-walk
dypgmlcal properites of the model thgt exhibit critical SiNgU-models(BARW). Using Monte Carlo method we show that
larities. For example, the average time needed to reach afe natural absorbing states do contain important information
absorbing state diverges when approaching the critical poingpoyt the critical behavior of the model. In particular, we
When appropriately defined, all critical exponents can be deshow that certain characteristics of natural absorbing states
fined through some dynamical singularities in an absorbingxhibit power singularities upon approaching the critical
phase. point.

Is it possible to infer some information about criticality of ~ The model and some of its basic properties are described
the model from the structure of absorbing stgt® Very of-  in Sec. Il. Monte Carlo results that show that the structure of
ten a given model has only finitely degenerate, homogeneousatural absorbing states contains information about criticality
absorbing state that does not carry any of such informatiorof the model are discussed in Sec. Ill. In Sec. IV, numerical
However, there exists a number of models that have infifindings are corroborated by random-walk arguments. In Sec.
nitely many absorbing states. When the control parargter V we also look at the dynamics of our model as a certain
set the model in the absorbing phase and far from the criticaninimum-finding procedure. Such an approach, when suit-
point, an absorbing state is reached quite fast and we migf@Ply generalized might serve as a general-purpose technique
expect that, in such a case, the absorbing state will be almoQ Solve some optimization problems. Finally, concluding re-
randomly selected among all the absorbing states of thElarks are made in Sec. VI.
model. In the following, an absorbing state reached as a con-
sequence of the dynamics of the model and starting from a Il. MODEL AND ITS BASIC PROPERTIES
random initial configuration will be called a natural absorb- ) i ) ) .
ing state. However, when the system is close to the critical Our model is defined on a one-dimensional ladderlike lat-
point, the evolution towards the absorbing state is quite londic€: For each bond between the nearest-neighboring sites we

and can be complicated. It is very likely that, in this case,introduce a bond variable/ e (—1,1) [4]. Introducing pa-
rametersr and s, we call a given site active when

W, W,|Ws|5<r, wherew; andw, are intrachain bond vari-
*Email address: lipowski@main.amu.edu.pl ables connected with this site amg is the interchain vari-
TEmail address: Michel.Droz@physics.unige.ch able. Otherwise, this site is called nonactive. The model is
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driven by random sequential dynamics and when the active Ill. STRUCTURE OF NATURAL ABSORBING STATES
site is selected, we assign anew, with uniform probability, In this section we examine natural absorbing states of the
three neighboring bond variables. Nonactive sites are not up- del forr=0. First. let us define the followi 9 doen-
dated. For a more detailed description of this model see Reffiodel Torr=0o. FIrst, let us define the foflowing pseudoen
3], €rgy e as
Models of this kind might be used to describe coarse- 1
grained b|olog|(;al evo!utlon,. where speu@tes) mutate e=— — 2 W W | W |, (4
only when the interaction with other species puts to much 2N 5
pressure on iti.e., when the site is actiy¢5]. In addition,
the above model provides an example of a coupled systemvhere summation is over all sit¢of the modelwy;, wy;,
whose criticality is changed due to this coupling. Recentlyandws; are three bond variables connected to the jsigad
related systems are drawing certain attenfi®h N is the linear size of the system. Active sites are those
Monte Carlo simulations supported by some analytic conwhose contributions to Eq4) exceeds-r. Another interest-

siderations clarified the basic properties of this model, whichng quantity is the average valug(r) of e calculated for
can be briefly sumarized as folloy8]. Forr>0 the model  natural absorbing states.

is in the active phase. Far<0 the model generates, at a Note that at criticality,g(O) can be calculated exactly.

finite rate, sites that are nonactive and that will remain in thiqndeed in this case any of the absorbing states has the fol-
statbg forever. Thgs],t the mohdel, vzryl qug:klyr,] entte)rs z.n abrowing structure: each chain has all intrachain variakesf
sorbing state and for<0 the model is in the absorbing e same sign and interchain variables can take arbitrary val-
phase. 'I_'h_e transition point=0 is critical and some quanti- || Moreover, for =0 the dynamics of the model is such
ties exhibit a power-law beh.eLwor. For example, the ordety ¢ it is only the sign of bond variables that matters while
parametelp decays in time with an exponeat their values are irrelevant. It means that the only requirement
(1) for a site belonging to a certain absorbing state is that two

intrachain variables connected to this site are of the same
sign. Hence,

p(t)~t~ % with §=0.5.

The average time- needed to reach an absorbing state in-
creases with the system sikkas

_ 1 1 1 11
—__ _ S,
7~ N? with z=2. @ &0 2N(2N)f0 Wld""lfo WdeZJ,12|W3| AW
Moreover, forr—0%, the order parameter scales @sr?, 1
while the transverse correlation length diverges &s T 4(s+ 1) ®)

~r "L with
where the triple integral gives the single site contribution to
€(0).

At r=0 the model’s dynamics is particularly simple since In the absorbing phase, the situation is not so simple and
in this case the coupling between chaing;) is irrelevant  an analytic evaluation cé(r) is not possible. However, this
and only the sign o#v,w, determinegnonactivity of a site.  quantity can be estimated by Monte Carlo simulations. For a
The dynamics of the model is thus similar to a certaingiven value ofr, we start from a random bonds configuration
branching-annihilating random-walk model, for which expo-and evolve the system until an absorbing state is reached.

B=v, =1/s for s=1. (3

nents(1) and(2) can be derived analyticallyr]. The average(r) is then obtained by calculatingfor sev-
At first sight, from Eq.(3) it seems that our model has era| independent absorbing states.
continuously changingwith s) exponents3 and v, . How- Simulations were done for systems of sie= 1000. For

ever, it was showri3] that this nonuniversality can be re- r=0, the analytical prediction was recovered with a great
moved when the control parameteis replaced by the reac- precision by averaging over approximately®ifidependent
tivation probability[8]. Note that the critical behavior of this apsorbing states. As a check, the result of E5). for s
model is related with that of certain BARW models. Indeed,=1 2 and 4 was reproduced with the accuracy of *10
critical exponentg3) for s=1 are the same as in the multi- 104,

species BARW model without exclusid®]. Moreover, ex- Our main concern is, however, the off-critical behavior of

ponents f0ts_=2 correspgnd to the B.ARW model with hard- g(r). Forr <0 the requirement that all intrachain bonds have
core exclusior[10,11]. Since nonuniversality of our model

: o 0 be of the same sign is no longer necessary. As a result,
can be remc_)ved by an appropriate redeﬂ_muon of th_e contro bsorbing states might have a more complicated structure,
parameter, it suggests that a similar situation might tak —
place in BARW models. However, up to now, it seems tha ence we were not ablg o calculaig) exactly: However,
there is no simple relation between BARW models with and>'nce forr <0 the dynamics leads to an_absorblrg state much
without exclusion. In addition, it would be interesting to gen-faster than at criticality, we expect thefr <0)>e(0) and
eralize BARW models so that exponengsand v, would  thate(r) is a decreasing function af Indeed, the dynamics
change continuously with a certain parameter that would insearches for states with small pseudoenergy. This behavior is
terpolate between the case with and without exclusion. confirmed by the numerical simulations. In addition, as
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creation of permanently absorbing sit@s the following we
will present some Monte Carlo data supporting this assump-
tion).

Using this assumption we estimate the number of perma-
nently nonactive sitesl, as follows. First, let us notice that
for r=0, the coarsening proceeds with the expon&nt.5
[3]. It means that the number of active sitdg(t) in the
system scales for large time &&,(t)~Nt %5 It is well
known that the time needed to form a domain of dizey
coarseningland for a dynamics with nonconservation jJaw
scales a$? (random-walk argumerjtl2]). Next, we estimate

o™ the total number of updates needed to create domains of the
o typical sizel as

-75 -7 -6.5 -6

logyo(r)

ﬂm40m~m. ®)

FIG. 1. The log-log plot ofe(r)—e(0) as a function of for
s=1 (0d), 2 (X), and 4 ). Fors=2 we also plot the density of
permanently nonactive sit€s-).

From Eg.(8) the probability of creating of a permanently
nonactive site scales as-¢)~. It means that the typical size
o | that scales as the inverse of the density of permanently
shown in Fig. 1, our results indicate thefr) has a power- nonactive sites behaves as
law singularity atr =0 and for vanishing behaves as

N
! N||r|1/s'

e(r)—e(0)~rP, ©) ©)
wherep is ans-dependent exponent.

The least square fit to these ddtssing the ten closest
datapoints tor=0) leads to the following exponentg
=0.46, 0.245, and 0.128 fos=1, 2, and 4, respectively.
These values gb suggest that the true exponefifsr infinite
systemg are p=1/2s. In the following section we present a
random-walk argument that supports this claim.

In the above relation we assume that the number of perma-
nently nonactive sites scales as the product of the total num-
ber of updateqg8) with the probability of their creation
(~|r|¥%). Using Eq.(9) we obtain that the density of perma-
nently nonactive sites scales as
N ~|r|2s), (10
The last relation explains the scaling relatier) —e(0)
~|r|¥?9) observed in Monte Carlo simulations of the previ-
First let us recall certain properties of this model that holdous section. Indeed, farnegative and close to zero the only
for r<0. As it was already showf8] in this case the model «oycitations” above thee(0) are due to the permanently

generates sites that remain permanently nonactive. Indeed, {jnactive sites and this contribution should be proportional
after updating certain active site the interchain bendsat- {5 their density.

isfies the condition To confirm our scaling arguments we measured the den-
sity of interchain bonds satisfyingvs|<|—r|*s. For s>1
majority of permanently nonactive sites is created on such
bonds. Our results, f=2 presented in Fig. 1, confirm that
the density of such sites scales|ag/(?. At the same time
this confirms the consistency of the arguments presented in
this section.

IV. RANDOM-WALK ARGUMENT

lwals<—r, (7
then both sites connected vo; remain permanently nonac-
tive. Since there is a finite probability to satisfy E§), for

r <0 activity in the system quickly dies out and the model is
in the absorbing phase.

Now, to explain the observed scalingeffr) —e(0), let us
assume that is negative and very close to zero. As it was
already discussed, at=0 an absorbing state is composed of In this section we consider the dynamics of our model as
“ferromagnetic” chains. We think that the following scenario a procedure to minimalize: active sites are only those
describes the dynamics for< 0. For early times, the evolu- whose contributions t@ exceed—r. Of course, the pseu-
tion of the model resembles thre=0 case and the system doenergye is a meaningful quantity also in the active phase.
develops larger and larger “ferromagnetic” domai@®ars-  Thus, one can ask the following question: In which phase the
ening. At the late stage the evolution of the system is mainlydynamics finds more optimal solution? In the active phase
governed by the dynamics of the domain walls. Fer0 the  the dynamics cannot inactivate all sites beacause the require-
system would coarsen until the fully “ferromagentic” state ments for that are too tight. Thus, even when a “good” set of
was reached. However, far<O, the activity between do- sites is found it gets destroyed by neighboring active sites.
mains might die out quicker, mainly due to the possibility of As a result a finite fraction of sites remains active with a

V. DYNAMICS AS A MINIMUM-FINDING PROCEDURE
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O - - - - [15], genetic algorithm$16], or their hybrids. In principle it
ooss b ] should be possible to extend our approach to solve some
other optimization problems too. Having an energy function
0.06 * I we should define active sites as those whose contributions to
-0.065 - % . this energy exceed certain value and then evolve the system
007 | 3 | similarly to the present model. Applicability and efficiency
o % of this approach to deal with more typical optimization prob-
-0.075 ¢ i ] lems is, however, left as a future problem. In addition, we
008 | ! j hope that such a method might reveal new connections be-
- tween statistical mechanics of models with absorbing states
0085 * TR ER AR and computational techniques.
000 St 7 :
0,095 , , , , , VI. CONCLUSIONS
0001 00005 0 00005 0001 00015 0.002

. In this work, we have shown that natural absorbing states

in a certain model contain important information about the
FIG. 2. The pseudoenergyas a function of for s=2. Inthe  critical point of the model. This information is encoded in

absorbing phase €0) the results are averaged ovef Hbsorbing  the static properties of these states. We should mention that
states [ =10%. In the active phaser(>0) we made an ordinary natural absorbing states are well known to contain informa-
steady-state averaging ensuring that the presented results are stien about dynamic properties of models with infinitely many
independent(for r close to zero simulations were made for  absorbing states. In particular, characteristics of the so-called
=10%). The black square denotes the exact vdfije spreading are known to have power-law singularities at the

relatively large contributions te. In the absorbing phase a ﬁ::lz:lrlsg(l)ilt;t and the corresponding exponents exhibit certain
“good’.’ set has a m_uch Igrger propabll|ty o survive but the An exteﬁsion of this work is to check whether our results
condition for being inactive are milder now and, as a result, licable to oth dels with infinitel bsorb-
worse solutions are also being found. Competition of a@'€ applicable 1o other Models With Infinitely many absorb
these effects implies that thredependence of the pseudoen- Ing states. S.UCh models appears in various contexts ranging
ergy is rather difficult to predict from catalysig 17] to self-organized criticality18] and bio-

To approach this problem wé measuredlso in the ac- logical evolution[5]. In some cases, the absorbing states are
tive phase and our results are shown in Fig. 2. In the absorbe-Xpeae(j to be quite compl¢49) and some indications of
ing phase we can see, the already analyzed. singular behavi r'jticality might be hidden in their static structure. Unfortu-
with minimum forrzd More interesting is t,he behavior in nately, we do not know which quantities would exhibit these
the active phase Firs;[ we can see that there (isaarow critical singularities. In particular, it is not obvious to us that
range ofr VF\)/here 'in the; steady stateis lower than in the in other models there exist permanently nonactive sites that
abs%rbin hase. Most likel ¥1owever for0" the pseu- most likely are responsible for the singularities observed in
doener 9 Eontinﬁousl a )rlt’)aches tmé:o value(5) pThe our model. Another question is what are the exponents char-

gye contint y app . ' acterizing these critical singularitiéprovided they exist In

loweste solution is found for ~0.000 18 that is very close .

g . Iy . our case, the corresponding exponfelf({ 2s) ] equals to half
o the critic al point bUt. not at the C.m.'cal. point. of the exponent3(=1/s) and it would be interesting to

In the field of combinatorial optimization, one frequently A X
o T .7 check whether similar relation holds for other models.

encounters problems similar to minimization of functions
like Eq. (4). For example, the traveling salesman problem ACKNOWLEDGMENT
[13] or number partitioning14] are equivalent to minimiza-
tion of certain spin-glass-like Hamiltonians. Main techniques This work was partially supported by the Swiss National
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